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Modelling predation as a capped rate
stochastic process, with applications

to fish recruitment
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Many mathematical models use functions the value of which cannot exceed some physically
or biologically imposed maximum value. A model can be described as ‘capped-rate’ when the
rate of change of a variable cannot exceed a maximum value. This presents no problem when
the models are deterministic but, in many applications, results from deterministic models are
at best misleading. The need to account for stochasticity, both demographic and
environmental, in models is therefore important but, as this paper shows, incorporating
stochasticity into capped-rate models is not trivial. A method using queueing theory is
presented, which allows randomness and spatial heterogeneity to be incorporated rigorously
into capped rate models. The method is applied to the feeding and growth of fish larvae.

Keywords: capped stochastic processes; fisheries recruitment models;
queueing theory models
1. INTRODUCTION

Predators eat prey. When the predator is carnivorous
the prey tends to arrive non-deterministically in
discrete units. Many mathematical models which
purport to describe this process use continuous
approximations; typically an ordinary differential
equation (ODE) is derived. When uncertainty plays
an important role in the process, for example when prey
are distributed patchily or the predator has a high risk
of mortality, there is a concomitant need to extend
these ODE models to incorporate stochasticity. This
paper shows that some intuitively plausible approaches
can mislead; the derivations of ODEs and their
stochastic generalizations rely on infinitesimally small
time steps, and are not necessarily applicable to
biological systems.

This work springs from the authors’ interest in
models of the growth and recruitment of fish larvae into
the adult population, a process which, for an individual
larva, is fraught with peril. Larvae exist in a highly
stochastic and patchy environment and possess only
limited locomotory and sensory ability. Moreover,
there are physiological limits on how fast an individual
can grow, imposed by factors such as gut size and
metabolism. Even under favourable conditions only a
tiny minority of larvae survive to adulthood—the
‘average’ larva is most definitely dead.
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ebruary 2005
ly 2005 477
Consider a general model describing an individual’s
change in mass, DM, during the time interval Dt. Mass
will increase according to the number of prey encoun-
tered during Dt, but cannot exceed some physiological
limit. Thus one may write

DM Zmin
prey encountered!conversion efficiency

Kmetabolic costs;maximum growth rate

 !
Dt

Zminðf1ðMÞZðMÞKf2ðMÞ; gðMÞÞDt;
ð1:1Þ

where M represents the mass of an individual, Z(M ) is
the rate at which prey is encountered and digested
(dependent on local prey concentration), f1(M )
describes the efficiency of converting prey into mass
gain, f2(M ) represents metabolic costs, and g(M ) is the
maximal rate at which the individual can grow. When
food is scarce, growth occurs at a rate f1(M )Z(M )K
f2(M ) which depends (through Z(M )) on local prey
concentration; when food is plentiful growth is ‘capped’
by a rate g(M ) dependent only on M. Note that the
mass of an individual is not subject to any constraint,
only the rate of change of mass has an imposed
maximum value.

It makes biological sense that the functions f1(M ),
f2(M ) and g(M ) are deterministic. If Z is also treated as
a deterministic quantity, then allowing the time
interval Dt to tend towards zero in equation (1.1)
leads to a limiting process described by an ODE.
Particular cases, e.g. the Cushing–Horwood model
(Cushing & Horwood 1994), have been explored
J. R. Soc. Interface (2005) 2, 477–487
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previously (James et al. 2003). The main focus of these
explorations was the time, tmat, taken by an individual
to reach a prescribed adult (or maturity) mass Mmat.
This event of reaching a target mass and hence moving
into a different life stage is usually described as
recruitment.

Previous work (Pitchford & Brindley 2001; Pitch-
ford et al. 2005) shows that it is imperative to treat Z as
a random variable, dependent on the local environment
in which the larva finds itself at any instant. In this case
allowing Dt to tend towards zero in equation (1.1) does
not lead to a limiting process; the problem is ill-posed
(see §2). Determining the distribution of tmat requires
the more detailed treatment based on queueing models
described in §3. This approach is first illustrated with
simple examples, where it is shown how spatial and
temporal heterogeneity can be included, before being
applied to the Cushing–Horwood herring recruitment
model (Cushing & Horwood 1994). Section 4 contains
the discussion and conclusions.
M
(t

)

time

Figure 1. Two example random trajectories. In (a)M(t) varies
as a diffusion process with drift. In (b) M(t) varies as a
compound Poisson process.
2. TWO NAIVE APPROACHES TO
STOCHASTICITY

The following notation will be used to describe two
important stochastic processes governing changes in an
individual’s mass, M. First, define M(t) as a diffusion
process with constant drift

dM ðtÞZ l dtCs dW ðtÞ; ð2:1Þ

where W(t) is a standard Wiener process (Grimmett &
Stirzaker 2001)—illustrated schematically in figure 1a.
The processW(t) has instantaneous mean zero, soM(t)
has expectation lt.

The second approach

dMðtÞZ dNlðtÞ; ð2:2Þ

uses a Poisson noise process (Feller 1950)—illustrated
in figure 1b. Here M(t) is a compound Poisson process,
increasing by one at each arrival of a Poisson process
with mean rate l. As in equation (2.1), M(t) has
expectation lt. Either of W(t) and Nl(t) could, in
principle, be used to generalize equation (1.1). How-
ever, where capped rate models are concerned this can
generate misleading results, as is described below.
2.1. Using W(t) to derive a stochastic
differential equation

When the prey contact rate, Z, is defined as a random
variable representing a heterogeneous food supply
equation (1.1) is no longer an ODE; it becomes a
stochastic differential equation (SDE). The field of
SDEs is well established and there are many techniques,
both analytical and computational, for dealing with
such equations (see, for example, Higham 2001;
Øksendal 2003). However, when the defining function
for the rate of change is not smooth, as in the min(., .)
function of equation (1.1), the authors are not aware of
any suitable techniques. Indeed, for the case where Z
follows a Gaussian distribution, it is argued that the
problem is ill-posed.
J. R. Soc. Interface (2005)
Firstly consider the uncapped deterministic case

dM Z ðf1ðM ÞZðMÞKf2ðM ÞÞdt: ð2:3Þ

If Z(M ) is no longer deterministic, the infinitesimal rate
Z(M )dt should be replaced by Z(M )dtCsz(M )dW(t),
where Z(M ) is an average value and sz(M ) measures
the intensity of the stochastic perturbations (assumed
to be driven by a Wiener process). The SDE

dM Z f1ðMÞðZðM ÞdtCszðMÞdW ðtÞÞKf2ðMÞdt
ð2:4Þ

is obtained. This is a well-defined SDE that can be
solved analytically or numerically depending on the
forms of the various functions. The time to maturity in
this case has been studied extensively, and some
analytical solutions have been found (Karlin & Taylor
1981; Grimmett & Stirzaker 2001).

Now consider the deterministic capped-rate case

dM Zminðf1ðM ÞZðMÞKf2ðM Þ; gðMÞÞdt: ð2:5Þ

If Z is now stochastic, as above, it is tempting to write

DM Zminðf1ðM ÞðZðMÞDtCszðMÞDW ðtÞÞ

Kf2ðMÞDt; gðM ÞDtÞ; ð2:6Þ

and hope to arrive at a SDE in the limit as Dt/0.
However, no such limiting process exists, fundamen-
tally because Wiener process sample paths do not have

http://rsif.royalsocietypublishing.org/
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Figure 2. An example random trajectory sampled at different
time intervals. In (a) the solid line shows the uncapped
trajectory and the dotted line gives the maximum rate
trajectory with slope g (here g(M ) is assumed to be constant
for simplicity). In (b) the same trajectory has been split into
three intervals and the overall mass increase is much smaller.

m
as

s

time

capped

uncapped

�M

� t

Figure 3. An example random trajectory using Poisson noise.
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bounded variation (Grimmett & Stirzaker 2001). To
illustrate this, consider a random trajectory as shown
schematically in figure 2 where it has been assumed, for
simplicity, that g(M )ZG is constant. In order to
implement equation (2.6) one must compare the
gradient of the uncapped trajectory defined by the
function f1ðMÞðZðM ÞDtCszðMÞDWtÞKf2ðM ÞDt with
the gradient of the functionGDt over a time interval Dt.
It is immediately obvious that the minimum of the two
gradients depends on the chosen time interval Dt; in
(a) the chosen time interval results in an increase in
mass only slightly below the maximum defined by the
capped-rate. In (b) the same trajectory is split into
three time intervals. Here the net increase in mass is
much smaller. Numerical exploration using an Euler–
Maryama scheme (Higham 2001) shows that, on
average, as the time interval is decreased the change
in mass decreases.
2.2. Using Nl(t) to define a stochastic
differential equation

Previous approaches (Beyer & Nielsen 1996; Pitchford
& Brindley 2001) have remodelled the system as a
Poisson process where Z(M ) is the mean arrival rate.
At each encounter the mass increases by an amount
J. R. Soc. Interface (2005)
determined by the efficiency function f1(M ). The mass
is also constantly decreasing according to the cost
function f2(M ). Once again the uncapped system is
well-posed,

dM Z f1ðMÞdNZðM ÞðtÞKf2ðMÞdt: ð2:7Þ

When the metabolic costs are zero, f2(M )Z0, the time
to maturity is simply the Nth arrival of the Poisson
process, where N is calculated from Mmat and f1(M ). In
the case where f2s0, the problem can be couched as
that of a random walk hitting a moving barrier. For a
smooth growth function, i.e. an uncapped rate, it can be
shown using a generalization of the central limit
theorem that this formulation is equivalent to the
SDE with szðM ÞZ

ffiffiffiffiffiffiffiffiffiffiffiffi
ZðM Þ

p
, provided the number of

food items consumed is large (Feller 1950; Whitt 2002).
Now consider the capped-rate system

DM Zminðf1ðM ÞDNZðM ÞðtÞKf2ðMÞDt; gðMÞDtÞ:
ð2:8Þ

A schematic is shown in figure 3. Again it is argued that
no limiting process is reached as Dt/0; the change in
mass is very sensitive to the time interval chosen. If Dt
is of the same order as or less than the interval between
arrivals of the Poisson process, then the increase in
mass quickly tends to zero because at each arrival of the
Poisson process the gradient is infinite.
3. QUEUEING MODELS

A robust and generic method that can be used to derive
an appropriate stochastic process for capped-rate
growth is obtained by turning to queueing theory.
Consider first the deterministic skeleton given by
equation (1.1),

DM Zminðf1ðMÞZðM ÞKf2ðM Þ; gðM ÞÞDt:

In the regime where M increases at its maximum rate
food is being encountered and digested at a rate of

ZðM Þmax Z
gðM ÞC f2ðM Þ

f1ðMÞ :

A new random variable X is defined as the number of
food items in the individual’s gut. This variable is

http://rsif.royalsocietypublishing.org/
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analogous to the number of items in a queue, in this case
an M/D/1/N queue where M, the arrivals process, is a
Poisson process (§2). The service process, D, is
deterministic. The finite limit N imposed on X(t)
represents the limited capacity of an individual’s gut.
As items in the queue are processed the individual’s
mass increases. The individual’s mass will always
increase at the capped physiological rate g(M ) provided
there is food available in the gut. This implies that, if
food is available, it is processed by the gut at the
maximum digestion rate Z(M )max. In addition, the
individual’s mass will decrease according to the cost
function f2(M ) when there is no food available.

dXðtÞZ

K
gðMÞC f2ðMÞ

f1ðMÞ if XONK1;

dNZðMÞðtÞK
gðMÞC f2ðMÞ

f1ðMÞ dt if 0!X%NK1;

dNZðMÞðtÞ if X Z 0:

8>>>>>><
>>>>>>:

dMðtÞZ
gðMÞdt if XO0;

Kf2ðMÞdt if X Z 0:

(

ð3:1Þ

Figure 4 shows a schematic of this process; see Whitt
(2002) for a more detailed introduction and further
examples.
Figure 5. The probability density function for the time to
process 1000 items under different traffic regimes. Three
different gut capacities are shown for each scenario. In
(a) lZ0.8, light traffic, in (b) lZ1.0, medium traffic and
in (c) lZ1.2, heavy traffic. TZ1 for all cases. In (a) the
dashed line (which lies under the NZ10 curve) shows the
distribution of the 1000th arrival of a Poisson process
with arrival rate 0.8. In (c) the deterministic solution lies
at processing time (of a thousand food items)Z1000.
3.1. The queueing model with a Poisson
arrivals process

The basic behaviour of the queue model is explored here
by considering a scenario in which the organism needs
to consume a fixed number of prey, arriving at a
constant rate (on average) and in the absence of meta-
bolic cost. Suppose f1(M )Z1, i.e. for every item of food
consumed the mass increases by one unit. Also set
f2(M )Z0 so there are no metabolic costs. g(M )Z1/T,
so the time taken to consume a unit of food isT and food
arrives with a constant mean rate Z(M )Zl. Also, the
individual’s gut has a finite capacityN. This constitutes
the well-known M/D/1/N queue, for which results are
available in the literature (Karlin & Taylor 1981; Brun
& Garcia 2000). The behaviour of the queue falls into
three well-defined regimes characterized by the traffic
density rZlT,
J. R. Soc. Interface (2005)
– light traffic r!1 the service rate is higher than the
arrivals rate, figure 5a;

– medium traffic rw1 the service and arrivals rates
are of the same order, figure 5b;

– light traffic rO1 the service rate is lower than
the arrivals rate, figure 5c.

Figure 5a–c shows the probability distributions of
the time taken to consume 1000 food items for each
case. In the light traffic scenario, figure 5a, the system is

http://rsif.royalsocietypublishing.org/
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dominated by the Poisson arrival process and as gut
capacity increases the distribution tends to the
equivalent Poisson process model (solid line). By
NZ10, the Poisson process solution and the queueing
solution are indistinguishable. In the heavy traffic
scenario, figure 5c, the system is dominated by the
deterministic service process. As the gut capacity
increases the distribution tends towards this limit. In
between these is the medium traffic case, figure 5b,
where the queueing model effectively comes into its own
and has no equivalent model, either stochastic or
deterministic, which it resembles. The probability
density functions in all three figures were calculated
numerically from 106 simulations of the stochastic
process.

It should be noted that, although the categorizations
of traffic density here are defined using the notation
from queueing theory, i.e. rZlT, it is clear from the
original formulation, equation (3.1) that

lZZðMÞ and T Z
f1ðM Þ

gðMÞC f2ðM Þ :

Thus one can rewrite the traffic density criteria as

– light traffic r!1 0 f1ðM ÞZðM ÞKf2ðMÞ!gðMÞ;
–mediumtraffic rw1 0 f1ðM ÞZðM ÞKf2ðMÞwgðMÞ;
–heavy traffic rO1 0 f1ðM ÞZðM ÞKf2ðMÞOgðMÞ:

For all three scenarios having a large gut capacity
reduces the expected time to maturity, which is
intuitively reasonable. Gut capacity can have a large
influence on maturity times, and would therefore
strongly influence recruitment. Moreover, the queue-
ing model reveals that deterministic models, or
interpretations based on capped-rate SDEs, would
not necessarily capture the essential features of the
process. In a low traffic regime, for sufficiently large
gut size, the time to maturity is constrained by the
arrivals process, with pdf symmetric about the
deterministic average 1000/l. Since the gut is seldom
full (Brun & Garcia 2000), an uncapped SDE would
capture the same result (Pitchford et al. 2005).
However, for smaller gut sizes a full simulation of the
queueing model is necessary. In a high traffic regime
for sufficiently large gut size, the time to maturity is
essentially deterministic (at 1000/T ), and is con-
strained by the time taken to process food items.
However, the queueing model again shows the
importance of gut capacity; as capacity decreases
both the expectation and variance of the time to
maturity increase. Even at large gut capacity the
medium traffic scenario has no realistic ODE or SDE
analogue, but the same general trends (increased
expectation and variance as capacity decreases) are
clear.
3.2. A comparison with other capped-rate
models

The concept of capped-rate models is not new in
biology, a simple capped-rate model is the Holling
J. R. Soc. Interface (2005)
type II (Murray 1989). Consider the following Poisson
process based models

A Holling II rate. The (stochastic) rate of arrivals is
governed by a smooth Holling type II function.

dMðtÞZ dNlðtÞ; where lZ
rM

M Ck
: ð3:2Þ

An unsmooth rate. The arrivals rate is a linear
function of mass when the mass is small and a constant
for larger values. This gives an unsmooth approxi-
mation to the Holling II.

dMðtÞZ dNlðtÞ; where lZ

rM

k
M!k;

r MOk:

8><
>: ð3:3Þ

Notice that this unsmooth Poisson process formulation
does not rely on a comparison of gradients as discussed
in §2.

A fully capped-rate. This is the queueing theory
model discussed earlier where the rate is never able to
go above the cap.

dXðtÞZ
dNlðtÞKr dt if XO0;

dNlðtÞ if X Z 0;
where lZ

rM

k
;

8<
:

dMðtÞZ
r dt if XO0;

0 if X Z 0:

(

ð3:4Þ

For simplicity, metabolic costs have been excluded. For
a more realistic approach, these costs would need to be
incorporated into the models. Note also that the
queueing theory model, in this case, has no constraint
on the individual’s gut size. Figure 6 shows schematics
of these functions and their stochastic variations.
Notice that for both of the standard Poisson process
models it is possible via a ‘lucky’ random fluctuation for
the growth to exceed the models capped-rate. However
in the queueing theory model the in built cap is a
definite one and the highest growth rate that can be
achieved is the deterministic maximum. Observe that,
in the case where there is assumed to be a deterministic
physiological upper bound to the growth rate, neither
the Holling model nor the unsmooth Poisson model
correctly captures the underlying process which is
successfully modelled by the queueing theory approach.
If random fluctuations were to occur in the upper
bound, perhaps due to internal physiological variabil-
ity, the capped-rate model would require modification
to include a stochastic rather than deterministic
processing process but the underlying concept of a
queue would remain valid.

Figure 7 shows the expected probability density
functions of time to maturity for a realization of each of
these models. In (a) the parameters r and k are chosen
so that the growth is dominated by the linear, mass
dependent, part of the function, i.e. the light traffic
regime. In (b) r is increased to allow the growth to be
dominated by the constant, mass independent rate, i.e.
the heavy traffic regime. In both regimes the expected

http://rsif.royalsocietypublishing.org/
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time to maturity is markedly different for each model
and in the heavy traffic regime the pdf also has a
decidedly different shape illustrating the effect of never
allowing the growth rate to fluctuate above its
deterministic maximum.

It is clear that the unsmooth rate and the capped
rate are capturing different underlying dynamics. In the
unsmooth case the organism’s growth is determined by
one function (a simple linear one here) at the start of its
life. Then, when a certain size is reached (k in this case)
a different rate underlies the dynamics. This is clearly a
different scenario than that described by the queueing
model.
J. R. Soc. Interface (2005)
3.3. A Pareto model

An advantage of the queueing theory model is that it is
possible to explore the effects on the time to maturity of
different types of arrival process. When a Poisson
arrivals process is used the arrival times are exponen-
tially distributed with a mean rate of arrival l. A simple
variation on this is to use a heavy-tailed distribution to
allow the arrivals to have a clustered or patchy
distribution. Distributions of this sort have been used
frequently when modelling internet traffic which is well
known to be ‘bursty’ (Fischer & Harris 1999). An
example of this type of distribution is a Pareto
distribution.
3.3.1. The Pareto distribution. If prey items arrive as a
Poisson process with mean rate l per unit time, X, the
total number of prey items that arrive in U units of
time, follows a Poisson distribution with parameter lU,
defined by the probability function

f ðxÞZ expðKlUÞðlUÞx

x!
ðx Z 0; 1;.Þ: ð3:5Þ

It follows that the time between arrivals, T, follows an
exponential distribution with parameter l, defined by

http://rsif.royalsocietypublishing.org/
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the cumulative distribution function

FðtÞZ 1KexpðKltÞ ðtO0Þ: ð3:6Þ
The expectation and variance of the time between
arrivals are given by

EðTÞZ 1

l
; VarðTÞZ 1

l2
: ð3:7Þ

The Poisson process model can be extended to include
the effect of patchy prey arrivals by allowing the mean
prey arrival rate, l, to be a random variable, while
assuming that the conditional distribution of Xjl is
Poisson (as in equation (3.5)). A plausible distribution
for l is the gamma distribution with parameters r,
aO0, defined by the probability density function

f ðlÞZ ar

GðrÞ l
rK1expðKalÞ ðlO0Þ; ð3:8Þ

where G($) is the ordinary gamma function (see, for
example, Abramovich & Stegun 1968). It can be shown
that (see, for example, Johnson et al. 1992) X then
follows a negative binomial distribution with par-
ameters r, aO0, defined by the probability function

f ðxÞZ rCxK1

x

� �
a

aCU

� �r U

aCU

� �x

ðxZ0;1;.Þ:

ð3:9Þ
Thus the time between prey arrivals, T, has cumulative
distribution function

FðtÞZ1K
a

aCt

� �r
ðtO0Þ; ð3:10Þ

and hence probability density function

f ðtÞZ rar

ðaCtÞrC1
ðtO0Þ; ð3:11Þ

which defines a Pareto distribution (see, for example,
Johnson & Kotz 1970). It follows that

EðTÞZ a

rK1
; rO1;

VarðTÞZ a2r

ðrK1Þ2ðrK2Þ
; rO2:

9>>>>=
>>>>;

ð3:12Þ

To quantify the effects of prey patchiness on recruit-
ment, it is convenient to reparameterize the distri-
bution by letting

aZ
rK1

l
; ð3:13Þ

to give

EðTÞZ 1

l
; rO1;

VarðTÞZ r

l2ðrK2Þ
; rO2:

9>>>=
>>>;

ð3:14Þ

Comparing equations (3.7) and (3.14), observe that the
expected time between prey arrivals is now the same as
for the ordinary Poisson process model. The variance in
the time between arrivals is controlled by the para-
meter r. As rY2, Var(T )/N, giving rise to a patchy
J. R. Soc. Interface (2005)
arrivals process. As r/N, Var(T )Y1/l2 (i.e. the same
as for the ordinary Poisson process model).

Figure 8a–c show the effect of a Pareto arrivals
distribution on the different traffic regimes. For each
figure the Pareto parameter is kept constant, rZ2.1,
and the mean arrivals rate is varied to change the traffic
density.

In a light traffic regime, the introduction of a patchy
arrivals process increases the variability in the time
to maturity in comparison to the Poisson process,

http://rsif.royalsocietypublishing.org/


Table 1. Cushing–Horwood parameters.

(Parameters used in the numerical simulations of the
Cushing–Horwood model.)

parameter value units

A 2.01!10K3 m (mg)KB

B 0.2234 —
bmax 0.48 —
bmin 0.135 —
d see text individuals mK3

j 0.002 —
M 33 mg
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figure 5a. Moreover, the effects of reduced gut capacity
are accentuated (i.e. expected time to maturity shifts
dramatically to the right compared to a Poisson
arrivals process with identical cut size). In a medium
traffic regime, again, both the expected time to
maturity and the variance in the time to maturity
increase. The effects of reduced gut size are again
amplified in comparison to a Poisson arrivals process.
In a heavy traffic regime, for sufficiently large gut size,
time to maturity tends towards the deterministic limit
(as for the Poisson arrivals process), and again gut
capacity is shown to be critical.
 r
at

e

capped rate

lo
wm
ed

iu
m

hi
gh

food dependent rate

0

Mmat 3165 mg
m1 0.0892 mg
m2 6.39!10K5 mgK1

n 0.67 —
R 0.75l m
rL 0.12 daysK1

s 2.6 mg1Kn

v 1.5l m sK1

e 7.4!10K8 m2 sK3

t 2 s
3.4. A model for fish recruitment

While simple models demonstrate the types of beha-
viour a system can display it is important to demon-
strate the method’s capabilities by using a more
realistic model. The Cushing–Horwood model of larval
fish growth (Cushing & Horwood 1994) is an ideal
candidate for this approach. The model gives explicit
functions for the capped growth rate, the larva’s
efficiency for converting food received into biomass,
and for the maximum physiological growth rate.
Initially, the external mortality rate in the model is
ignored and it is assumed that all larvae whose body
mass increases will reach maturity. This allows for easy
examination of the probability density functions of the
time to maturity.
0

M0 Mmat

gr
ow

th

larval mass

Figure 9. A schematic illustrating the growth rate for different
larval masses and food concentration levels as defined by the
Cushing–Horwood model.
3.4.1. The Cushing–Horwood model. Cushing & Hor-
wood (1994) presented a mathematical model for the
growth of herring larvae. Each individual larva hatches
with mass M0, and then grows according to the
equation

DM ZminðbðMÞZðM ÞKCðMÞ;GðMÞÞDt; ð3:15Þ

where b(M ) is the larva’s efficiency at converting food
into biomass

bðM ÞZ bmaxKðbmaxKbminÞeKjM ; ð3:16Þ
and the metabolic costs and the capped physiological
growth rate are

CðM ÞZ sMn and GðMÞZ rLM ; ð3:17Þ
respectively. The mean rate of catching prey (in
individuals sK1) is found using the Rothschild–Osborne
turbulent contact rates (Rothschild & Osborn 1988)

ZðM ÞZ dpR2 v2 C4w2
R

3ðv2 Cw2
RÞ1=2

; ð3:18Þ

where d is the spatially averaged concentration of prey
measured in individuals mK3. Each individual prey
item is assumed to have a mass of 1 mg, to simulate
predation on small copepods. Larval body length and
mass are related according to

l ZAMB ; ð3:19Þ
and the larva’s perceptive distance is

RZ 0:75l: ð3:20Þ
J. R. Soc. Interface (2005)
The appropriate turbulent fluid velocity for predator–
prey encounters is

wR Z 1:9ðeRÞ1=3: ð3:21Þ

Each predator–prey encounter takes a fixed time t

(during this time no further encounters are possible)
and larvae spend 12 h foraging each day. At this point
the model can be used to explore the probability
density functions of the time taken to reach maturity
(cf. figure 10).

Finally, the larva is subject to a weight dependent
external mortality probability

Pmort Z exp
Km1

1Cm2M
: ð3:22Þ

With this addition the model can be used to calculate
the probability of reaching the target recruitment
weight (cf. figure 11).

The parameters used are summarized in table 1.
Figure 9 shows schematically how the larval growth

rate depends on mass in the Cushing–Horwood model.
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Figure 10. The probability density function for the time to reach maturity mass in the Cushing–Horwood model at different prey
concentration levels (as labelled from 17 000 to 2200 mg mK3). Each figure shows the pdf for three gut sizes: 5, 10 and 100. For
concentration levels below 19 000 mg mK3, the probability of reaching maturity is negligible for gut size NZ5.
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The model specifies that growth is governed by the
minimum of the capped rate and the food dependent
rate. The capped rate is necessarily independent of food
concentration levels and is a simple linear function of
mass. The food-limited rate is shown for three different
prey concentration levels. In the low food concentration
case the initial growth rate (i.e. at M0) is governed by
the food limited function and, furthermore, is negative.
In this case the deterministic model will always predict
that all larvae will die, but the stochastic model allows
the ‘lucky few’ to experience an unusually high initial
growth rate and hence there is a low but significant
survival probability. In the medium prey concentration
scenario a small part of the larva’s initial time will be
spent in a largely food limited environment but as the
larva’s mass increases it quickly moves into a regime
that is dominated by the capped rate. Finally, in a high
food environment the larva’s growth will always be
J. R. Soc. Interface (2005)
dominated by its capped rate as this is the minimum of
the two functions for all values of mass.

Figure 10 shows the probability density functions for
the time to maturity when the Cushing–Horwood
model is implemented using the queueing theory
model with Poisson arrivals and no external mortality.
The pdf is calculated for a range of food concentration
levels between dZ17 000 and dZ22 000 prey mK3. At
each concentration level three gut sizes are considered;
5, 10 and 100 prey items, respectively. It is clear that as
the concentration level increases the system is domi-
nated by the physiological cap and the variance of the
time to maturity decreases rapidly as the gut size
increases. Also, at the lower concentration levels, a
larva with a small gut will never reach maturity.

Now, the external mortality function given in
equation (3.22) is included and the focus is on the
probability of reaching the target recruitment weight.
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Figure 11. The probability of reaching recruitment mass for
varying concentration levels with three different gut sizes. In
(a) the arrivals process is Poisson, in (b) the arrivals process is
Pareto with rZ2.1.
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Finally, figure 11 shows the probability of reaching
maturity for varying food concentration levels and
different gut sizes. Here an external death rate has been
included in the model, so that rather than a pdf of time
to reach maturity there is now a probability of reaching
the given maturity weight. In figure 11a the arrivals
process is Poisson, in figure 11b it is a Pareto process
with rZ2.1. In this more realistic model the modifi-
cation to a Pareto arrivals process, to model a patchy
food environment, has the effect of shifting the mean of
the pdf of time to maturity to a higher level thus
decreasing the probability of recruitment. This is the
same effect as for the Pareto arrivals process in the
simple model. For the Pareto arrivals process a gut size
of 5 gives zero recruitment for the whole range of food
concentration levels, whereas in the Poisson arrivals
scenario this gut size gives significant recruitment
levels at higher food concentrations. For the Poisson
arrivals process the difference between a gut size of 10
and 100, while still significant is not large. However, in
the Pareto case there a very large difference between
NZ10 andNZ100. Even atNZ20, the difference is still
significant. It is interesting to note that for high
concentration levels, when an individual resides in a
world governed almost wholly by the capped physio-
logical rate, the expected stochastic recruitment equals
the deterministic recruitment. This is in direct contrast
to previous results for uncapped growth which have
predicted that increasing levels of stochasticity will
J. R. Soc. Interface (2005)
always have a beneficial result on growth rates and
recruitment (Pitchford et al. 2005).
4. DISCUSSION

Although it both increases computational complexity
and impedes significant analytical progress, the queue-
ing approach offers several advantages. The generaliz-
ation of the arrivals process quantitatively to account
for spatial heterogeneity has been described above, but
other factors such as variable prey size spectra and
nutritional value, and variable predation, are readily
incorporated. The fact that the key model parameters
are individual-based rather than population-based
makes the development of testable data-driven models
more achievable.

The parameters used in §3.4 were not tuned so as to
fit any particular observational data; the large tem-
poral and spatial variations in observed recruitment
would render this a meaningless exercise. The model’s
power is in explaining precisely which ecological
processes drive recruitment, highlighting particularly
the role of environmental stochasticity and mortality.
However, all parameter values are based on published
data (Cushing & Horwood 1994). It is interesting to
note that larvae with the smallest gut capacity (5 prey
items) fare considerably worse in medium traffic
simulations where food is patchily distributed at
realistic abundances. There would appear to be a
strong evolutionary pressure to increase gut capacity
from 5 toward 10, but a further (unrealistic) increase to
100 items appears to confer only a slight advantage.
Refinements of the model which include a metabolic
cost of growing and maintaining large gut capacity
could further elucidate this evolutionary aspect, pro-
viding insight into how environment and risk should
influence physiology; these are beyond the scope of this
paper.

In the light of the results presented here it can be
argued that ODE and SDE formulations of growth
represent two extreme cases, with different traffic
regimes in finite capacity queueing models providing a
link between the two. For the M/D/1/N queue, as
traffic increases and r/N the probability of the queue
being empty tends to zero (Brun & Garcia 2000), so
that the time to process a fixed number of items is
essentially deterministic; ‘growth’ could then be
described by an ODE

dM

dt
Z

1

T
:

Alternatively, if N/N and r/1, i.e. light traffic and
an infinitely long maximum queue length, then the
probability density function for the number of items
processed after time t is the same as that for the
equivalent Poisson process. It can be shown, using the
central limit theorem, that provided the number of
items needed to reach maturity is large this can be
approximated by an SDE (Karlin & Taylor 1981;Whitt
2002). Outside these extremes, where growth is
stochastic and arrival and processing operate on similar
time scales, it is impossible to provide a sound
mathematical description without recourse to the
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individual-based stochastic process (i.e. the queue)
governing the dynamics.

SDE formulations remain an important and power-
ful tool in understanding growth and population
dynamics; the message contained herein is that they
ought to be used with caution wherever the under-
lying deterministic process is not smooth. In such
cases an iterative halving of time step and master
equation transition probabilities may not lead to a
meaningful convergent solution. If the existence of a
‘natural’ time scale can be argued on physiological,
ecological or physical grounds, then SDE approaches
can yield compelling results even when the underlying
system is not smooth (see, for example, Truscott &
Gilligan 2003, where the authors model the stochastic
development of an epidemic under the influence of
temperature as an SDE with a fixed time step
corresponding to a characteristic time scale for soil
heating). However, where an arbitrary time step is
artificially imposed, perhaps through simple historical
precedent (Cushing & Horwood 1994; Pitchford &
Brindley 2001), a model’s outputs may have an
unrealistic dependence on this choice of time step;
simply decreasing the time step does not solve this
problem.

While being based on the larval growth models
outlined previously, the queueing approach presented
here could apply to any scenario where an organism (or
cell, or molecule) with a finite capacity has to
experience a certain number of similar stochastically
driven events, each of which takes a finite time, before
exhibiting a response. For example, ongoing work seeks
to apply the method to stochastic ‘integrate and fire’
models for nerve impulses (Iyengar 2000).

We would like to thank Martin Hairer for useful advice
regarding the existence of limiting stochastic processes and
the anonymous referees for their thorough reviews and their
clear and constructive comments.
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